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ABSTRACT.

This is the second report of an investigation to determine how implicit paralleliﬁ-’
in programs written in compiler languages can be recognized and exploited by -~ 77
machines with highly parallel organizations. An algorithm is described which '
jdentifies the complete serial ordering among parts of a program based on the . _
input-output sets of these parts, the ordering given by the programmer, and &ny- e
known essential order among the program parts. The algorithm is proved and &
demonstration given that a minimurm number of comparisons of input-output sets
are made. Application of the parallel recognition procedure to subroutines, loops, :
conditionals, recursive subroutines, and serial input-output device calls is ex- ./
plained. The effect of particular features of several compiler languages on paral-
lelism are discussed. These features include loops, transfers of control,- con~ - . ik
gitionals, and conditional sequences. Requirements for replacing iterative loop S
control by parallel paths of control are given.. Alternative algorithms for e
recognizing essential ordering are suggested which can be executed more effee~ oo
tively on a highly parallel machine. Application of the given algorithm tothe . °. e

syntactic definition of a context-free language is also considered. o
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INTRODUCTION

The object of this study is to detect instances of parallelism implicit in programs
written in compiler programming languages, The method chosen is to recognize
the essential partial ordering between program parts, since only parts which are
not essentially ordered can be executed concurrently.

In this report an algorithm for formal analysis of programs is presented and
proved which yields all instances of implicit parallelism between program parts
based on input-output set intersections. Any initially known essential ordering
is used, The number of input-output set comparisons is minimal, At most, two
consecutive iterations of a loop are necessary to determine the essential order
for all iterations of the loop, Only one iteration need be analyzed for intra-loop
esgential order, The inter-loop essential order is determined by using both
iterations. Sufficiency of this analysis is shown through application to language
independent formal translator structures, including subroutines, loops,
conditionals, recursive subroutines, and serial input or output calls,

Special features of particular programming languages affecting implicit
recognition of essential ordering include loops, unconditional transfers, con-
ditional statements, and parallel evaluation of a seguence of conditionals. The
loop statements yield potentially the greatest opportunity for parallelism. Con-
ditions for replacing iterative control by a number of parallel paths of control
are given., Unconditional transfers may create loops or cross boundaries of
scopeg of variables., Data dependent conditions are a principal cause of essen-
tial ordering. The duration of definition of an instance of a variable provides
essential information for efficient memory allocation.

Alternative algorithms which can be executed in parallel to achieve results
comparable to the main algorithm are suggested, A method is indicated for

reducing the complexity of syntactic definition in context-free languages by

establishing classes of productions which can be recognized in parallel.

Most present programming languages presume that programs are to be written
as a sequence of instructions., This permissible gsequence, while it contains the
essential ordering (i. e., it computes each value before that value is used), also
contains much extraneous order (i. e,, it orders computations for which the
order is completely immaterial). In the previous report* we gave an algorithm
which detects the essential ordering given a permissible ordering, In this
report we extend the algorithm to permit detection of essential ordering given

a consistent combination of essential and permissible ordering.

1
Superscript numbers refer to references in the Bibliography,



A process is a transformation whz.ch genera.ies a finite set of eutputs ' '
: from a finite set of inputs. ’

An input is the information contamed ina- regmter at time of aecess y
‘a process, . . T

A program is a finite set of processes which can be partially ordered
by their input-output set intersections,

A process execution is the application of the process transformation
io its input set to produce its output sei,

An ordered pair of inputs and cutputs will be identified with each process, For -
process P;, this pair will be represented as (I,, O ) It will be assumedq that all
outputs are unique, that is, every time a regis%er is written into, a new name is-
created, This is done to keep separate the recognition of implicit parallelism in
names from the potentially many-to-one mapping of names into registers,

The following relations between process pairs are used in this report:

OTi'; P; must precede Pk is given,

3, - Pi may precede Pk ig given,

o

o
T P; must precede Pk'

o,

Sk P. must directly precede Py

If neither Tk nor Tk then processes P; and Pk can be executed in e1ther ordér or

concurrently. oS, T, and S are, respectively, the sets of all true Tka osk
T]i, and Sli. The algorzthm uses the given oT and OS io produce T and 8,

A graphical representation of the effect of applying the algorithm was presemted in o

the first report.® This representation ig still appropriate for the revised algorithl!&" -
with the following substltutlon Each relatmn P; R P, was labeled Bsa directed s

these S arcs and the S arcs used in the graphical 111ustrat1ons in the first r&pnﬂ _
note that the reference process pair being analyzed partitions S into three disjoint: e
sets: process pairs already analyzed, the reference process pair, and process o
pairs to be analyzed. Consequently, there is no need for separate symbols The
graphs used as illustrations in thig report consider only S and T o
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ALGORITHM FOR DETECTING ESSENTIAL
SERIAL ORDER

Thig section describes the algorithm (Figures la and 1b) for detection of
essential serial ordering of processes from their input and output sets,

From previous partial analysis or explicit indicators, essential order is
sometimes known to exist between processes of a program, Consequently, the
algorithm of the previous report! has been extended to include any initially known
essential order among processes as parameters to the algorithm, Therefore,
the corresponding input-output set comparisons are avoided during the algorithm,
When no essential serial order is known initially, the algorithm is equivalent to
the previous one. * The extended algorithm together with formal definitions of
its parameters and the relations among them are now given. A proof of the
algorithm is also provided, The number of input-output set comparisons made
by the algorithm is shown to be minimal. The reader who does not wish to
engage in the details of the proof can obtain the egsence of the algorithm and
minimal comparison argument from the definitions and subsection introductions.

* .
When oT is empty, then any T arc identified in step 3, Figure la, will not be
in 8. This will be explained later

S RES Al



3 ’ q H 0 e TIY o i : 5 ]
Given: 0S, o r, N, T.i {(1«i=s ™), O."I {1<j= N} and Osk implies i<k

Find: MS’ MT

Method:
Step 1. for k = 2, 3, N do
Step 2. r fori =k-1, k-2,..., 1do
-

i | il T1 f lse then

Step' 3.
Step 4. |, l if "\ = 1rue then
[ k ——

Step 5. | , ,— if O "1 = + then
i

Step 6. | | , ] I - true
Step 7. | ; I qu Lo aiep 13
.
Step 8. ; ! o heryise (0 k = )
Step 9. i— ~ lalge

Step 10,

Step 11,

B N e s — —  — v

Step 12, for 3 =k+1, k2,. ., N do

Step 13, Ls § s
| L . ' )
Step 14, 1 M herwise (T,{ = true}

r-_[mf"] =1, 2,..., i-1dc¢

Step 15.

Step 18, | ko :'.. 1

L

!
i

Step 17.

I__._ -

Figure lua, Algorvithm for Essemial Order Detection




PARAMETERS
r‘S : initially given permissible ordering relation
oT : initially known essential ordering relation
N : number of processes in program
IIi : input set for process j
0j ; output get for process j

MS : covering relation for the complete essential ordering

M’I‘: the complete egsential ordering relation

SYMBOLS
¢ :the empty set
N : set intersection

-, ¥, A, T are respectively the binary operators '"replaced by',
"ogical inclusive or"”, "logical and", and "logical complement",

given in increasing binding order

SUBSCRIPTS AND SUPERSCRIPTS

/__. indicates transitive closure of mR

t_ i ——» indexes the predecessor process
For any:relation ——a R

m*.___. indexes the successor process

“—— indicates the iteration of the algorithm
which produces R; m does not appear
in the algorithm description

| 2

i
Rk = true if and only if R and no asmgnment has been made into R, ,

17

I

or the last asmgnment into R was true

Figure ib. Symbology for Algorithm




DEFINITIONS

Definition 1, Process, Pj.

A process P; is an ordered pair of sets {I;, O;) e

J i R ] .--"'..

Pj, Oj ig called the ocutput set for Pj. -

Definition 2. Prﬁgram, P,

PEORT LY PR

which the intergection of the input and ocutput sets can be useci 10 define & strmgly_ wi3
anti-symmetric relation. That is, P can be ordered so that" ur any

€ <
Pi, Pk P, Oi n Ik 7o implies i < k,

Definition 3, Rk’ the arc from P to P

For any relation R < (P X P) we will wrlte R if and only 1f P P € P and R

relates P to P in that order.

Definition 4. t'R, the transitive closure of R, -~ - - : ;-_-4_' :

For any relation R © (PX P) we will write ER to mean that relation such that
t ji o jﬁ-.-l jn
2 Ri'nl » R

Rk if and enly if there is a sequence of R arcs Rl

jl Ja
. Note that B, iz always trangitive, :
Definition 5, T, the essential serial ordering, - ) :"
The relation T ¢ (PX P} is the essential serial ordering among the processesg B P

of P, This order is imposed. by -the input-output get relation, - “That is, fcr an;r S

P Pk ¢ P, Tk if and only if there is a sequence 0 n I& # ¢, O, n I i‘ ¢ -

0 n Ik # ¢, Thus T is the trans:tzve ciosure of the input- output set --'-,
relatmn Then T is transitive and gince the input-ocutput set relation is ltrcmg]y

anti-symmetri¢, sois T,

Definition 6, S, the cover for the essential serial order, i i

S 1s the covering relation for T, That is, for any P, P € P, Sk if and onl}' 11

T and there is no P3 € P such that both TJ and Tk Note that 's = T.




Definition 7, oT’ the known essential serial order,

The relation T is any subset of the relation T.

Definition 8, 0S, the given permissible order,

The relation S is the given ordering of the processes in P supplied by the
programmer, S is any strongly anti-gymmeiric relation S(PX P) such that

T c CES and T c ( T N S) Note that T satisfies the requirements for 0S.

Definition 9. rnR’ the relation R after m iterations,

For any relation R, we will write mR to mean the value of that relation after

t
the m h iteration of the '"for i" loop (steps 3 to 17) in the algorithm,

Convention 1, N, k, i, and M,

Hereafter we will write N to mean the number of procegses in P; k and i will
st

"for i loop; because N is finite (Definition 2) and the only loops in the algorithm
are at steps 1 and 2, the algorithm terminates in a finite number of steps and

we will write M to mean the total number of iterations of the ''for i'"' loop.

Definition 10, mC, the compared process pair relation,

£1 o o o MY Lo e o 21 o ~
\L = II1 = V1) LO LI1EdIl Lilal rej.atlun SU.CI'.I. Iﬂa[ o
m m h

Pg’ P, €Pandi =g and k = h for some iteration j (1 < j s m) of the '"for i" loop.

h
Note that _ C2 if and only if Pg’ P €Pandg<h,

M n

L

if and only if

h

For any program P and any relatmns Q, Rc(PXP), Q< R if and only if
for all P P € P, Q implies Rk



PROOF OF ALGORITHM

The' algorithm (Figures la and 1b) generaies the.i?éla;tions MS ‘and M;'.["”

reiahons S and T the input sets I {t<gix N), and-the output 9efs .

It will be shown that MS =8 and MT T. The ajgonﬂ:m functmns asg fu-]lo
.= -'..-H

f . o -- --.n-‘.‘! -

The body of the '"for i'" loop (steps 3 to 17) is executed once for each aré ii‘“&'m.';.‘ :
k - e &{

OS, T, 8, and T are strongly anti-symmetric, The order of the arcs {sie_n:é-'-i _' .

® e -
“PH

and 2) guarantees that all sequences of arcs connecting two processes wiil I':e -

o i 1

Pi to P, such that Pi’ PkE P and i< k, These arcs are sufficient because

determined before the single arc connecting the processes is considered,

Therefore, all indirect T paths can be determined without comparing the input- -

output sets of the end processes, For each iteralion of the "for i'" loop, if the e
arc from Pi to Pk iz not already in mT (step 3), then it must either be in S, or R
P and P can be executed concurrently, Therefore if the arc is not -in t S‘ ' ;:E

then the input,-output comparision must be made (step 5). If the mtersecuon is

non-empty, then the arc is in § and T, and is added to __ . T (step 6}. U the iy

m+1

intersection is empty, then Pi and Pk can be executed cnncur-rently and the are . T:“_‘::‘.j,‘?,i

e n
oo ! WY

will be deleted from mS {step 2}, To ensure that the arc from P to Pk ig th&__..- A

TP ]

Ry sk —--ﬁ'

— e

t
only arc deleted from mS’ arcs are added to iS (steps 10 through 13). Stepg _-_E“-

10 and 11 guarantee that there is a sequence of '_ S arcs connecting to P fmm

all P, where S‘?, while steps 12 and 13 guarantee that there are S BIPGH-~ i
mi m+1 R

connecting P, to all Pj where msi‘?. Whenever there is an m 1T arc from Pi

cover, step 18 ig included io ensure that no sequence of nt 1'1‘ arcs ending in




"dm D tem A e 3
O X, 18 &an arc in

i 7%k m+1°*

At o ™
Gll al v 11wVl

17 includes all sequences of m+1T arcs ending in an arc from Pi to P, as arcs

k

in m+ 1T.

Lemma 1. For allm(0 = m < M), mTE T,

Proof. o T € T by Definition 7. Assume for any m(0 s m < M) that ng_ T.
L8t
During the {(m + 1) iteration of the ''for i'' loop (steps 3 to 17), arcs are added

i
1 .
to m+1T only at stepﬁs 6 and 17, If rn+1Tk is added at step 6, then 0i N Ik £ ¢

(step 5) and by Definition 5, T, If the arc o +1T1i is added at step 17, then
7 . ince either O, NI # g
m mi i "k P 7

(step 5) or mT; (step 14). But T] and T_imply T}, since T is transitive
{Definition 5), Therefore, all - 1T arcs added during the {(m + 1)St iteration

are in T. Since by hypothesis, all other +1T arcs are in T it follows that
m

[ i i c =
mt lT & T. By induction on m, mT < T for all m(0 <m = M),

t
Lemma 2, For all m (0<m s M}, mT - (mT n mS)_

Proof, oTE t(OT ﬂOS) by Definition 8, Assume for any m(0 <« m < M) that

t t
mTE (mT ﬂmS). If not Tc< TN

mrlt = Yt m+13), then either some T

m+1
t,

arc was added or some S arc was deleted during the {m + 1)S iteration of the
m-

i
{step 4) and thus

1|f 21! . Ti
ori" loop, If was added at step 6, then - 1Sk

m+lk

t i

i, —i .
(m+1T n et 1S)k. If msk is deleted at step 9, then mTk {step 3), and since no
t

. st . . . .
m+1T arcs are added during the (m+1)~ iteration, mT < (mT N mS) implies

. .
(. .TNn_ 8 Ifmsli is deleted at step 16 or

i,
m+1T S Cpta m+1°7° T, is added

m+1lk

i i
(step 4) or mTk (step 14),

i
t st 17, th i
at step 17, then either m+1Tk (step 8) and m+lsk

T:l added

In either case t( T N
mt+1 m m+lk

+IS)1~1:' But if mSI‘l was deleted or



' '(steps 18 and 17), then T] and thus by hypothesls ( '

all S arcs deleted durmg the" (m + 1) 1terat10n are

h=k (step 18), and no T arcs are deleted Thereforemt(

| ....«(ﬂ:‘u’i ﬂnﬂ
m+l 113 J. l,_,,_,,h“ .

t j . j’ A - ‘.-J.I: L ..

(1T N gy since both ( 1T Mt and (m+1 - m+1S)k. B S
c : . ; o " o

cases then, T S (m_l_lTﬂ m+1_5)._ By mduetmn 911.}“: ml & = CmE i:"::*:!

or all m{0 <m < M)}, B _-:-.--.,.

ALY

Iemma 3, For all m(o sm = M), TE nf_s o e Ao
-IL-M“"..:.
‘Mq

Proof. Ifm =0, then by Definition 8, ’I‘ = S The only S 8TCes which are.dl'ﬂeted."-'

during the (m + 1) iteraticm of the ”for i loop are at steps 9 and 18,
deleted at step 9, then with the exception of S; itself all sequences o
beginning with Sk are retained m S {steps 12 and 13)

arcs ending with Sk are retained in S {steps 10° and 11}, with the exceptim _;-: -

PENC s.uw'

of S and SJ {step 11} where l £j<i (steg li)} and. . T (step 11}, The e..!:.‘d““;_‘_‘

S need not be retained since 0. f I = 4 {step _B)i _ T_‘_l‘_:a._t is, ?  BY Lemma

TJ (step 11) implies ( T N S):i But 'I‘ (step 3). so that the sequenqe_, 0 --_;_-_-;-::_E
( TN S) arcs from P3 to Pk cannot contam an arc from P to Pk Thud t-hé ;E&E“‘_,.;
mSIJ{ is retained when msk (step 9) is deleted, If- 83 (1 <j<i)is deleted at-—----;1§

step 16, then mT; (step 3) and mT;ii (step 16). By Lermma 2, ( TN S}

A -n-qgﬁu

and 1I;( TN S):?, which implies there is a sequence of 5 arcs from P to B
m m i m j

other than the single arc S-‘1 Therefore, deleting the arc Sl‘l does not deleta»

t.d
the arc msk' Then in all cases T C S implies T < Yok ls By mductzdn on m,

TEI;Sforallm{OsmsM).

LR
i

- m
B RTEI RN

ey
= | s W
- ]

10 e T




Iemmad4, Forallm{s<sm<M), SN Cc TN C.
fleesbisfeimideontote sl Y m m —m m

Proof, Ifm =0, then oC = ¢ and we are finished, Assume for any m(0 <m < M)
that SN Cc TN C. Leti,k be respectively the values of i and k during the
m m —m m -

(m-+ 1)St iteration of the "for i'" loop, Then consider any Pg’ Ph € P such that

g g g s . , . g = _
m+lch and mt 1Sh. m+1Ch(Def1n1t10n 10) implies that elthermCh, or g =iand h =k,

mt 1S arcs are added only at steps 11 and 13, and during the (m+ i)St iteration none

g8

s g . .
of the ot 1S arcs added are in ot 1C {steps 10 and 12), If mch‘ then m+1oh implies
g : g g .
Sh and by hypothesis mTh’ but no mT arcs are deleted, so m+1Th' Otherwise,

, _ i, . i , i
g =1iand h =k, and by the above argument et 1Sk implies mSk‘ Then if mTk

i — i i ,
(step 14), m+1Tk' If mTk (step 3), then mSk (step 4) and e 1Sk (step 9) require
that step 6 and not step 9 be executed, But by step 6, m+1T11' Then in any case,

any arc in both lS and rn+1C is algso in T. By induction on m,

m+ m+1

SN _Cc TN Cforallm (0 =m s M),
m m =m m

ILemma 5. For allm(0 < m < M) and for any P,,P ,P_ € P, if Cg, T
—_— i'g'"h m h m g
g

j —=j
, th
and Th en both Th and Sh'

Proof, Ifm =0, then 0C = ¢ and we are finished,

Assume Lemma 5 to be true for any m(0 < m < M), Then congider any Pj’ Pg’ P

h
€P such that _ .C5 T and TS By Lemma 1 T implies TS, and
m+17h' m+1 g’ m+1"h 'm+1 h h’
since T is strongly anti-symmetric (Definition 3), g <h, Similarly, TJ

m+l o
o

: o 8 i . ; J i
<
implies j < g. If C] , then C°, since j<g<h, Then T' and T, since none

. t. ;
of them+1T arcs added during the (m+ 1)® iteration {step 6 and 17) are € rnC. By

. g J g i g
h; C
ypothesis Lo ng, and mTh imply mTh and mSh' But no m'I‘ arcs are deleted,

so J If $J, then since _ SJ s) must have been added during the

m+1Th' m+1"h' mh m+l h

11
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{m+ l)s iteration (step 11 or step 13). Bur il could not have heen angn:a;;

gince then T (step 11) Nelther- conld mE S have been added at. ste-p 1

m+lh PSR-,

.h>k(ste§s 13 and 14) but by cg h<k Otherwise,

+1"h
By induction on m, for all m(ﬁ = m = N) and any PJ PL P £P,

. o - ) :_' N g J I.. . . »
(step 17) 1 me1 Ty Ty, imply +1Th e

£ . =i
mTh 1m§1y mTh and msh_'

Lemma 6, MS = MC.

{Definition 8), all arcs of _ S must be in _ _C,
M M

1. =T,
Theorem MT T

Nl ginee — o gy
Proof. Ry Lemma 4, MS n MC c MT’ bul since S . '\IC (Lerama 6}, then

t t - >
MS MT Therefore, MS MT and since T - 1\ S (Lemma 3), we ha.ve ?_E'ME e

MTE T (Lemma 1) and TS MC (Definition 5}, 5 1‘ = _w(.. Therefore, MT ié

transitive since MT N MC is transitive (Lemma 3) and MT n MC =

is transitive, then I:IT = MT' and gince we already have T ¢ I:IT' T < MT . .

by ILemma 1, MTE T, 8o MT =T, I

Theorem 2, MS =S,

Proof, MS c MT gince MS f MC = _“'i' {Temma 4) and MS = C (Lema 6}, 'But

h13 < 'MT implies 1:18 = I:IT’ and gince MT = T {Theorem 1), ?v'is = "[‘, Then sil'nce | --:.II..?'%:._.:“




t t t
T is transitive (Definition 5), T ='T, and therefore IvIS = T, But Tc Iv’iS (Lemma 3)

: : g i g
= € T
S =T. By Lemma 5, for any Pj,PgJ Ph P, if Mch‘ Mg’ and MTh’ tl;en

C (Definition 5), so for any P1,, Pa, Ph
i""¢ T h

:J‘:u.g -

T T (Theorem 1) and T c 1\

=

T
Vi

€P, if T; and T

)

g = t
S W = =
o’ then e already have MS T. Therefore _ S =85 by

Definition 6,

PROOF OF MINIMA L COMPARISONS

It will now be shown that no algortihm can produce S and T from OS and oT with
fewer comparisons between input and output sets, This will be done by first
ghowing that one comparison must be made for each arc that is in S and not in OT,
and that one comparison must be rnade for each ZS arc which is not in T, It will
then be shown that each input-output set comparison in the algorithm identifies a
unique arc which is either in S and not in oT’ or is in ZS and is not in T, and that

no comparison is made more than once,

t
Lemma 7. For allm(0 < m < M), mS c S

t
Proof, oS < OS, by the definition of transitive closure. Assume for any
t .
m(0 <m < M) that mS < c’S. During the (m+ 1)St iteration of the "for i' loop, arcs

are added to . $ only at steps 11 and 13, If +1S1J< is added at step 11, then

i i t i t i
s! 11) and is S
moi (step 11) an mSk (step 4), Therefore, by hypothesis osi and oSk‘ Then by

the definition of transitive closure, tSi Similarly, if Si is added at step 13
m+ J !

then S (step 4) and S (step 13), so that by hypothesis S and S i and

therefore oS Then ot 18 < OS, since all S arcs added during the (m+1) st

m+1
t
iteration are in 0S and by hypothesis all mS arcs are in ;S. By induction on m,

a~ tae i,
S  for all m{0 <= m <
m o m( M).

In
w

13
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h.output set corparisons is minimak =2

-——m ot m-un.

it

" Theorem 3. The number of in

Proof. .‘Let P, Pk € P's’uch ﬂiat : Sli. For an rs.lgor-nhm io estabhsh'v;'ﬁ%
7 net S ‘it must be at 1east able io,"" ote mme whether T., since § €T Unida"‘_"‘

k’ k’ i .

-mumllh

S‘.ST;) . if,.m

or that there is a P3 € P such that both T3 and 'E"’ {Definition 5).
4

there is.no P3 ‘€P such that both TJ and T (Dofmmon 6). Thus, the comparis.'én
0. N1 must be made, If Tl, hen gince T is transitive there can be no P, :
i 'k k J P
e """I'Eii"

that both T; and Tli. Thus, the comparison O I1 must be made. That is, o;_;"ﬂi‘.‘ BRI

input-outpul set comparison must be made for each arc that is in 8 and nat in 0'I‘.: T .:‘EH

t C , A

and one comparison must be made for each 05 arc which is not in T, R
L

b . o & 2 N *&St,( T LIRS A.l_!_n, i1 = - .|- . s Mab R T e S ] e 2 a1 i ;:“a::?:-_.‘m
I during the (m+1) "iteration of the "for i"loop {1 < m < M), the comparison O, ”!k s
t LT L
. — CRTT hm‘huﬁﬂ
is made {step 8), then S {step 4}, But then h’k’ since mS = S {lemma 7}. Alsu. S

’I‘ {step 3}, and therefore T . since the algorithm docs not delete any ares f!‘em

T, If it happens that 0_ N I’k # ¢, then the arc S is not delered during the (m—H.)

m k -

iteration, But +1 X (steps 9 and 16) can noi be deleted during any subsequent- ---:—--__ .
iteration of the ''for i'' loop. That is, Msli’ and Lherefore Sk’ qmce S S(Theo-i -5 ..“...--‘.'.:...
rem 2), If 0i Il Ik =g, theank{step 3 ‘and step 6 is not execuled during the (rxi-i- f_t-- d. :...
iteration, so ;T-';- t o k(steps 6 and 17) can not be added during any sub- _-_‘_':':.._.:
sequent iteration of the "for i"' loop... Thus, .MTk’ and therefore Tk‘ since MT."T -: -
(Theorem 1), That is, each input-output comparison Oj. - Ik in the algorithm - ._.._:#
identifies a unique arc (from Pi to Pk) which is cither in S and not in oT' or is in '.”E{z
ES and is not in T. Finally, none of these comparisons is made more than once e

Y

14 T




since only the sets Oi and Ik are compared during the (m+ 1)St iteration

(step 5), and no two iterations of the "for i'' loop have the same value for the

2 .
malTwm o1
peraid iy o

Therefore, every input-output comparison made by the algorithm is necessary.

15
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investigated relative {o certain formal prcgram structures- and the‘sdvazg;
which are relevant to subroutines, conditionals and serial input- output_cmﬂ
explained. With the explicit exclusion of arrays, it is shown that. Idaps.sdy :

cursive subroutines can be csrrif;ié%ely analyzed with oRly two'fﬁgtapce

AT e

process, Arrays will be considered in the next report.

SUBROUTINES
R =

The advantages of the non-empty T-arise in the analysis of program struttires =
such as subroutines, A subroutine (whether open or closed) need not. be-'a‘.ﬁ'ﬂv‘iﬁﬂ".‘.‘
for each call, but may be analyzed only once and the results of thai ana"lysis-uuse&ii‘iﬁu-__
at each call on the subroutine. This is accomplished by first analyzing: th; s
rogptine and then using the resulting 8 and T relating the intra-subroutine pr
cesses as oS and ,T, respectively, for each program call on the subroutines ™

program analys:Ls w111 then identify all instances of parallelism without dupliciﬁﬂi:“.ﬁ““‘
any comparison of the intra-subroutine input-output sets at the various” .. AP
subroutine calls, ‘ .

An alternative method for handling subroutines reduces the number of proceEsss

used in the analysis and, therefore, the size of S and T. In this scheme, the i
subroutine iz analyzed once separately from the program, Then rather ihafy [0
inserting the subroutine analysis results into the program at each call,- f:ha it
gram is ana.lyzed with each subroutine call serving as 2 single process: In-:ifif

The above methods are not applicable io recursive subroutmes smce the -
substitution process is nontermmatlng .

LOOPS \

The algorithm as described can be used 10 analyze a loop by stretc‘nng it.putmg*r
a sequence of iterations, This analysis, however, cannot be performed uikL =Ty
run time if the number of iterations ig data dependent., Even if the number : -
iterations can be determined at compile time, the number of processes prﬁﬁégﬁuw"

by flattening out the loop may exceed the handling capabilities,

ism determined by input-output set relations is now developed. Initially we mll—""
assume that the programs under consideration either do not contain arrays or - “
that each array is treated as a single variable. This restriction guaranteea that*_;

i8



input-output sets are not a function of the iteration. That is, for any iteration of
a loop, if an instance of a variable appears in the input (or output) set for some
process, then for any other iteration of the loop, ancther instance of that
variable will appear in the input (or output) set of the corresponding process.

Since each iteration of a loop has the same processes in the same given order
and with the same input-output names, analysis of any iteration of a loop will
identify the intra-iteration parallelism for all iterations of the loop, The array
handling technique mentioned above guarantees that analysis of any two consecu-
tive iterations of a loop will identify all inter-iteration parallelism, since direct
essential ordering of processes can exist only between processes in the gsame or
consecutive iterations, Therefore, loops can be handled by analyzing only two
consecutive iterations of each loop,

CONDITIONALS

There are several run-time philosophies which may be used in conjunction with
conditionals. One approach permits both branches of the conditionals and the
condition itself to be executed concurrently. When evaluation of the condition
is complete, one of the branches will then be inhibited. This method
reduces the duration of the program at the expense of performing some
computation whose outputs will not be used,

An alternative approach will, however, be taken here, The goal will be to
initiate each process as soon as possible without executing processes unneces-
sarily, This may be done by evaluating the condition before either branch of
the conditional is initiated and then executing only the single necessary branch,
This approach does not prohibit processes common to both branches of the
condifional from being executed concurrently with the evaluation of the condition,

Conditionals can be analyzed as any other processes, except that the given T
will be nonempty. For example, let process Pj be the condition, Py and Pg be
local to one branch of the conditional, P4 and Pg be local to the other branch of
the conditional, and Pg be common to both branches. Then _S will be the given
order of the processes as shown in Figure 2 . T, however, will have four arcs,
one arc each 1o indicate the serial ordering between the condition evaluation and
the processes local fto the conditional branches. S% and OS% are included to
guarantee that ;,Tc (S N T). * °

E 3
The need for the requirement oT c t(OS N OT), introduced in Definiticn 8, is
iltustrated by this example. If OSé were not included and 02 n I3 = ¢, then
the algorithm would not generate MS;’ since OT;, and consequently

even though S;.

=1
S .
S?‘M . since /S,

17
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Figure 2. Graph Yor Condilionals

RECURSIVE SUBROUTINES . wa
. e A 'Iu:lﬂ

The anaiysis of recursive subroutines may be handled similar to loaps, .. Sinc.n,e

'Iﬂura'l of ecall on a recursive en‘nﬂhlﬂ"ir'.r'a 'nne fhe zamae nrocpzges 1n I"‘ln qn-:l-'ll:‘l.ll'{-i“‘ mﬁn:.s;
eve 1OTOUTING Has 1ne JSar Pr RS g e
order and with the same nput-outpa rartes, analysis of any level of recursion:

identify the intra-level parallelism for ali levels of recursion, Treatmé";i?&;-&j ey
single variables guarantecs tha? anal}'sas of any two consecutive levels of xecy

will identify 21l parallelism between drocesses In the same level, hetwesi ‘Tﬁ.‘ﬁ_ e e
cosses in consccutive levels, and beitween processes in nonconsecutive’ Ieva'!&.'#hﬂ
thai parallelism also exisis berween conseculive levels, Therefore,. rec‘{‘_’ﬁi?ﬂ:ﬁﬁ]

routines can be handied by analyzing 'wo consccutive levels of recursion in- hm:...::
subroutine. TEEY —

-

I'Hln-‘-l-.
bt
o

An example of 8 for a recursive subrouiine is shown in Figure 3 Each‘lﬁ'ﬂ."ﬂﬁ'
the given subr otiine consists of a condition P, 5 [ollowed by alternaﬁve PrOCeREek.
Pb and ]" and, in eiiher case, ierminating with Pd The process Pb 28 ‘s peoupiam
sive call on the subr ouline, hque da shows ub for intra-level: snalysis Rﬂiﬂ
ngul (] ul) b!l( by '3 J.U' inret -LL.\_E" anafvms. Lﬂ(“' 1)1 111“.‘[1 O.IICI. llﬁnp

represent proc esSes in two consecurive levels of th-:- rcursion, 'Wote.th&tf‘flti
process number [0 P, must be less than that of P’, While the number o
must be greater than thar of Pd' . T

P

' P
P P_ 4
a., Intra~level

Figure 3. oS Graph for Analysis
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SERIAL INPUT-OUTPUT CALLS

Many oneway input and output devices, such as card readers or line printers, are
read or written serially. To ensure that the information received from (or trans-
mitted to) these devices is interpreted (or displayed) as intended, the given
order of reference must be maintained. For example, if lines were sent to a line
printer in any order other than that given by the programmer, the intended format
would be disrupted. Thus, for each serial device a T arc will connect those
pairs of processes which include consecutive references to that device. Let

P., P?,' P, P, PS' and P.., in that order, comprise a program, and let P2, Pq
and Pj5 include reference to a particular serial input or output device, The 58
and oT for this program will then appear as shown in Figure 4,

S o —— e
0 ./ l
o — - > »e
Pl P2 P3 P4 P5 PG
i ___m
QO
a @ »9 a a [
'_F’1 P2 P3 P4 P5 PG

Figure 4, Serial Input-Output Calls
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CPARALLELISM oo

The language mdependent approach to recognizing parallelism throagh- s_tud

formal transiator siructures permits identifying general aspects- 01 a-ssem-u
ordermg without getting 1nv01ved Wlth fea Lures of puriiculay musuag;:“-““-

Mirtec Weslhea
i et L
e s

Specific language -dependent features are also 1:rnpoxta.nt since the iﬂte&d&ﬁ""‘"
applications are programs written in actuai languages. By conmderu‘i&"tlﬁf‘""
specific differences in actual languages, a comparative basis can be gataBligBEd:
for recommending that particular features be wsed for parallel recogmtmnpfﬁii'ﬂ
features be used as essential order indicai’ons, and, indecd, that languagesheﬁia&
particular features to aid in the recogmt1u.1 of parallo_lsm i

o i A i,
L -n-

Some specific features of 1anguages w111 now be invesiigated. Loop sts.temer_l::sm

il el

yield the largest potential for parallelism, since each set of cmbedded ldopg.= e
multiplies the number of opportunities for parallel execution. The FORTRAN D

ot dlingrmeps sl el

ALGOL FOR-, and COBOL PERFORM- staie:nents are anal; szed, {Incondztxon e

transfers cause problems in the recognition of loops and in crossmg the seoge e ———

-ﬂm

boundary of variables. Conditionals which are ¢ata-depeundent pose the" prmcipa iy

e LT

unpedlment to parallehsm Evaluating gt-ouns of conditionals in p&rallel rﬁtnm"*-

hhhhhh wm Bues ~f o w0 U Tl 0 it v — e
L[ld-ll Hbd.l.l.ﬂf..l-“.g l-l.lﬁl-.u. u.u. ngll d. Py Ug]. d...l..l]._, _J.I..ll.l-_ L‘-'D lll? nuiiner L. ncyu;nlﬁu... (R

ordered parts of a program, Duration of definition of an instance .of a variaBleTfato~
FT PR EREA -

important to the mapping of ingtances into memory on o no'nrnertamng "basis.- Y - Koy
beginning on this analysis is reported e

LOOPS

um-.-'—.__m.

Loops play a dominant role in programs writien in present programmm_g--ianguages_
They permit programmers to iteratively express repetitive processes with-econouy
of program. The iterative nature of loop conlrol is adequate for sec;uent'xa:}-exeeu-—
tion, However, the iterative form impedes parallel setap of the cont ralmxm
bodies. Gosden® has concentrated on expliciz loop const rucls asa"'th'é"rﬁ‘ﬁw
sources for parallel activity. . He prioposes that a large fraction.of- au-l.oopa.nr.ﬁ?...
parallel, both in the control and the lcop bodies, und recom mends- exﬁ.:ﬁﬁﬁw
the ability to specify loops as either parahm or itcrative in the prugrm'ermi!'i—_‘r__
language - I

We W111 now consider thie control of loops ard parallel e:.ianhsinnent.ﬁﬂﬁm
paths of control even when the control mechanism s iteratively eXpréSSEa IR ""

i i A A

programming language. e e e il =

[

B -M

Some opportunities to establish in parallel more rhan one execution of a: loo_p -hoe _
are determined by the algorithm, The algorithm requires for concurrent: e;;_eeu’tien—-h

tatimed | Wkt el

that not only must the control variable be independem of iis predecessarigantrglr

variable, but also independent of its predecessor -onp hody. The loop colitfol ZTIUT0,
statements in FORTRAN, ALGOIL, and COROL wiil be compured to sea-what G 3T

opportunities exist for establishing concurveni puths of control for loop bodies:-—-—’:i:'_iﬂ

i e ke vt sl e

L ([T S
PR auesm
[T

s el e

ket bl
f e ——— AL




At compile time, if the number of executions of a loop is recognizable as an integer,
then parallel paths may be established. If the number of executions is recognizable
at execute time upon encountering the loop entry, then parallel path controls may

be established at that time to initiate that number of loops.

Conditicnal statements within a loop body that can lead outside the loop with no
intent to return are possible in ALGOL and FORTRAN, COBOL and ALGOL have
explicit forms of loop control including condition evaluation to determine loop
completion. Evaluating such a condition generally depends on loop-created data
{otherwise an explicit formn for indicating the number of iterations of the loop
would have been used). Consequently, there is an essential order between cycles
of the loop when a condition determines the exit. In some casges it may be possible
to reformulate the loop to separate all condition evaluations from loop body

executi on,

FORTRAN and COBOL program units are characterized by static storage require-
ments determinable at compile time. ALGOL program units, on the other hand,
agsume dynamic storage requirements. The effect of this difference on loop
control is to allow significantly more ways to defer to execute time the decision on
number of loop executions in ALGOL, and to make loop executions essentially
ordered,

Further interpretations and restrictions on these general ideas are developed in the
following three descrlptlon s of the particular loop statements in each 1ang age,
L
FORTRAN DO Statement
A DO statement is of the form
D =m,, m_, m
Oni 1 g Mg
where: n is the statement label of an executable statement occurring as the

terminal statement of the associated DO, The statement must follow
the DO and be in the same program unit. The terminal statement may
not be a GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE,
DO statement, nor a logical IF containing any of these forms, In effect,
this allows only the DO loop control to follow execution of the terminal

statement,
1is an integer variable name of the control variable,

m, is the initial parameter,
Ing is the termination parameter,

m3 is the incrementation parameter if present, otherwise +1 ig implied.

L N
This description of the FORTRAN DO statement is adapted from reference 3.
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- Bachm,, m,, and mg ig either ah. mteszer constant or integer varrable«-ref'

it ¥4 B

At t1me of execution each must be positive und m, < m;. 7The range oE i'h

-~ the ‘set of’ ‘executable statements following the. DO slatement througl;_thw

_the g;-eatest integer in (m, - ml)/ms parallel. ass:.gnmenrs:. .

statement, - Procedure actions required withinthe range ke d8sufi€d:

e WA W

' tempcrarﬂy wzthm the range o S P

e - ._..a...:

Redefmmg {by a551gn1ng ‘of a new. valﬁe to) aﬁy ofi, m., mz, my is: prolmb'i"te :

"ot " Rl

during the execution.of the range of the DO. This means that the maxrmum'n
of executions- is always known.- before le‘E't gxecuiing the range.

The DO statement execution sequence is 1) i = m,; 2) execute range, if the tgmin
statement is reached; 8}1 =i+ m,, ifi <ma GO TO 2 4) exit'with DO ﬁﬁ#ﬂ

o oy o
Ve el i

Exiting from the range of a DO may occur by execut on of a GO TO statement 01' nn
arithmetic IF, that is, exiting may oceur wzthcut sausfqu the DO,

e ]
TSP Y

—— i ¢ el i
R TR

A GO TO or arithmetic IF statement may not cause. Lontrol to pass into the i'aﬂgg By

—— L G

of a DO from outside its range, except as described below for the extended range gt

sy
hifn | ' u-.-u-—u-'nﬂ_.

All values of the control variable can be asmgned at compile time if the following. =l 5™

two conditions hold: 1) m;, m,, and mg are integer constants, 2) there ogel P e

no exit from the range of the DO by execution of 2 GO TO statemnent or an arithe-= - =<

# dinleieal

metic IF statement. If these conditions hold, it is possible to cstablish k 1 plus '—,-*"*

If condition 1) is relaxed to permit integer variables for any of the m,, ma, or m is,

e i m‘ it

then at compile time it is possible to add the above computation for k as & eontrol- E
process which can then establish that number of parallel centrel paths for exeeuting-

the ranges. coe LT

. -
—
.

Nested DO statements are possible so long as the range of the contained DO 1s ¥ "G
subset of the containing DO. Execution order is inside ouls A complete nests& -nesf-- =

of DO statements occurs when the first occurring terminal statement of an}‘ BO v
statement follows the last occurring DO statement and the first vecurving DG - ooz
staternent of the set is not in the range of any DO statement. For sucha completely -
nested nest of DO statements, sn extended range is permitted for the innermostiof o .-l .‘l’:.“_

M mLSiA AT aT WAL 1A =Rk £ 62 ¥ 40 = ] il
ek -'l-dihﬁ

the DO statements, from Whlch control may pass external to the next and retum ta ol

the innermost. No recursive use of the extended range is permitted. T" e e i

It is not necessary that the range of an embedded DO statement be parallel Eur the- -~-
range of an outer DO to be parallel, A nest of DO statements may be totally- L ——
parailel if all DO siatements in the nest are parallel, In this case the product_ it
ky X kg X ..., xk, paths of control may be established. TR
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#
AlLGOL FOR Statement

The syntax of the ALGOL FOR statement elements (given in a modified Backus
normal form) which are important for this loop discussion are as follows,

(for list element) ::= (arithmetic-expression) | {aritbmetic-expression}) step

{arithmetic-expression Y until {(arithmetic-expression} ]

(arithmetic-expression) while (Boolean-expression}

(for list)::= (for list element) | (for list), {for list element})
(for clause) ::= for (variable):= {for list) do

{for statement) ::= (for clause )(statement)|{label}: (for statement}

A for clause causes the statement which it precedes {the forloop body) to be
repeatedly executed 0 or more times, In addition, it performs a sequence of
assignments to the control variable from the for list.

The sequential execution expected is the following: 1) initialize the control variahle
by assignment from the value of the first for list element, 2) test for an invalid
assignment; if it is invalid, go to the successor statement of the for statement,

3) execute the statement (exit if a go to leading outside the statement is encountered)
4) perform the next assignment from the next for list element in the order written
to the control variable doing any necessary evaluation of arithmetic expressions,
using the current values of primaries, and then go to {2) again.

In order to establish paraliel paths of control for all executions of the loop bedy,
the number must be known before any are executed, For this number to be known,
there must not be any condition which ig dependent upon loop-created data that can
change this number, Consequently, for lists made up from for list elements of the
AE or AE step AE until AE types (categoryl) are potentlally unordered, Each for
list element of the AE while BE type (category 2) imposes an essentially ordered
sequence of loop body executions, A for list may consist of an alternating sequence
of for lists from categories 1 and 2, in in which case a similar sequence of potentially
unordered and essentially ordered executions of the loop body exist. Any data-
dnhnndpn'l- conditional in the for which can cause exit from the 1nrm hnrlv

imposes essential order, Hereafter we asgume no such conchtlonal and

thus, we consider only for list elements of category 1,

If no assignment is made into the control variable by any statement in the loop body,
then all its values are obtained from the for list. ALGOL permits assignment to
the control variable or to primaries in the arithmetic expressions of the step AE
until AE parts of a for list element to be made in the loop body, If such assignments

*
This i8 a partial syntax from reference 4 adapted by leaving undefined some
non-terminal syntactic elements such as "(arithmetic-expression)',
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list. The last value of the control variable is preserved if exit from the: gg ""“"‘"“""***-5
statement occurs because of a go to in the loop body. ' i ~ R

Side effecis of a procedure call can cause assignments outside iis body ox eXfE I

other than the return to point of call. Such procedure calls occur in the for bodi-aiv' : i
in the for list, Either of these can prevent or make indeterminate at comprl&tfirqeu .
the establishment of parallel execution of the for body, Huxtable® has classifiedw- s
procedures as follows: normal - having no side de effects, conditional snesks 3 gige ==
effects are conditional on context, and unconditional sneaks. The conditibii:
for recognizing normal procedures are as follows: no OWN variables, - nonlotal
assignments, abnormal exits, nor use of any switch; internal procedure cails’
limited to normal procedures; parameters exclude label and switch; and no ¢xpli:
assignment to parameters called by name. Conditional sneaks are the same. as =
normal except that explicit assigroment to parameters called by name is pemiﬂ&d.,_._.“
All other procedures are assumed to be unconditional sneaks, He describes,a...” " wwmy

technique for classifying procedures which involves discovering the total of all.
'|+'hnu ﬂh 'F\l'ni-hﬂ'n

?ﬁsslhle '”un__t**“e pvﬁnnaf‘\i'li'ﬂc Aaii c!'i'?!uﬂi"n'nnﬁ G‘f tl-a P“ng‘-“m' n ugh _“‘

analysis might show that unconditional sneaks would not require essential - -
ordering, the effort would likely be greater than the benefit gained. =~ '

COBOL PERFORM Statement®

s s R el R,

“The PERFORM statement is used to depart from the normal sequence of emumﬂ‘mwu
in order to execute one or more procedures either a specified number of tﬂﬁ&“&_ﬁm o]
until a specified condition is satisfied and then return control to the normaIZE:"“: pngveraresiil

sequence - the statement following the PERFORM.

The four general formats are as follows:
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1) PERFORM procedure-name-1 [ THRU procedure-name-2])

identifier-1
2) PERFORM procedure-name-1 [ THRU procedure-name -27 {integer— 1 } TIMES

3) PERFORM procedure-name-1 [ THRU procedure-name-2] UNTIL condition-1

4) PERFORM procedure-name-1 [ THRU procedure-name- 2]

index-name-2 .

index-name-1 , literal-3 ..

- o UNTIL condition-1

VARYING {identifier-l } FROM }1tera}1. 2 BY {'dentlfler—i% —_—
identifier-2

' index-name-4 index-name-5 literal-6

in - = i - - L dition-2

AFTER {identifier-4 } FROM }1teraf1. 5 BY {identifier-ﬁ} UNTIL condition
identifier-5

[AFTER. . .]

Each procedure-name is the name of a section or paragraph in the Procedure Division,
Each identifier represents a numeric elementary item described in the Data Division.
In formats 2 and 4 with the AFTER option, each identifier represents a numeric item
with no positions to the right of the assumed decimal point, Each literal represents

a numeric literal,

There is no necessary relationship between procedure-name-1 and procedure-name-2,
except that a consecutive sequence of operations is to be executed in every case be-
ginning at procedure-name-1 and ending with procedure-name-2, In particular, GO

TO and PERFORM statements may occur in the sequence. If there are two or more
direct paths to the return point, then procedure-name-~2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these paths must lead.

Format 1 corresponds to a call of a procedure without actual parameters. In format 2,
the procedures are performed the number of times specified and, therefore, parallel
_paths of control may be unconditionally establighed, At PERFORM execution, the value
of identifier-1 or integer-1 must not be negative, If the value is zero, control passes
immediately to the statement following the PERFORM staternent, Once initiated, any
reference to identifier-1 has no affect on varying the number of times the procedures
are executed. If given as integer-1, the control may be set up in parallel at compile
time as long as the procedures in separate iterations are parallel, If given as
identifier-1, the number of control setups may be determined from the value of
identifier-1 on encountering the PERFORM at execute time,

The UNTIL condition parts of formats 3 and 4 preclude parallel execution, except in
those cases where the conditions are fully evaluatable at compile time, or the or-
dered set of results of condition evaluations are determinable prior to executing the
procedures., To achieve the equivalent of the ALGOL construct until AE, the condition
would compare the index name {(or identifier with the value of the desired limit),
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Format 4 permits setting up one, 1wo, or three comrol variables, testmg. thﬁ,_‘i;i‘::

. i
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the last daia-name is alre r-c-cl oy 1he L.pp"”]:u_'ﬂ'(’ amount and the cerresg}ﬁneﬁ;}g-m

condition retested. When a condition is wrae, other than the first, that: datmw
reinitialized, and the nex! preceding data-name '8 asgmented and tested, - tmm::;
condition-1 is true, the PLRTORM is finished.

In addltlon to the restriction on parailclism cau—ed by the TUNTIL (.‘uu.uu.l.un..p-u hﬁlum
control variables other than Lhe first ave reinirialized ro the FROM value duning-Ahe
PERFORM. Their values may be alteroed ‘m' the procedures Erom the vahms-wh&m-

e e o P, [P

the PERFORM was encounct '(‘(1' likew 1-:(." ke index-names and J.UEHTII.I.EI‘S UEC!‘EI"‘::.E

ring in the BY part of any of the con rol variables and any variables occurring .- ol

part of the conditions may be abered. Any such alieration will prevent parallelre=
execution unless either nureric Herais (or jden if.ors whose values are conRtraingd,. .

similarly to the ALGOL primaries Lsod in AE) are used for these alterations Lol isy

UNCONDITIONAL TRANSTHRS

An unconditional transfor of coniral 10 another part of the program causes Ihe .Z.Z’.....‘ "" i
following problems: 1) possible cres-ion of loops and 2} crossing a bu-undary“‘bf isp————
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scope of variables. 2T
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Potential creation of loops is detecrable, An slgorithm for rlate c':mg loops given- mmmminin
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the process connection ruatrix has becn given by Marimont, © All program loops: . -wus

- -.n-nl.ulﬂui
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jumps indicate loops, since the order of sequemial programs can be scramhled J TSN,
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be indicated. I_f“paths are mutually exclusgive, not only should the mechamsm 1’01}-_»:-—_'

enabling one path be provided, bui also rhe oulpuls from paths not taken should"bg--m
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made invalid and the pamicular need [or inpurs required by such paths: shat;k@,_ﬁg:--—"..
released. i v
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During the execution oi a seriul program, erossing a houndary into the scop& [\ e
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variable serves to reserve space for, bul assign an undefined value to, any--- - e
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CONDITIONALS

Language constructs for conditional establishment of paths of control based upon the
result of a single condition are used in most programming languages, The form is
to first evaluate the condition and then set up a path of control for the single path
corresponding to the result. N-way branching constructs can be reduced to
selection of one of N alternatives also based upon a single condition,

Conditional establishment of a single path of control presents a problem in deciding
which instance of a register is referenced by a process following the condition when
several instances could be meant, depending on the actual path executed. Alterna-
tives for solution of this problem are based on the duration of definition of an

instance.

SEQUENCE OF CONDITIONALS

Languages that group conditionals for evaluation with action selected as the first to
be true (decision tables), or languages that have a list of condition - action pairs of
which the first condition to be true selects the action (LISP) - provide opportunity
for executing the conditionals in parallel, When logical relations among a group of
conditions are evaluated to select a particular action process, the individual con-
ditions may be evaluated in parallel as long as 1) evaluation of any conditional
does not modify the result of some other conditional in the same group, and 2) all
operands required for evaluation are defined.

The first qualification may be met by having temporary storage locations into which
all instances of store operations associated with conditional evaluation are made,
with stacking or tagging to indicate the creating condition., A conflict may occur
because of name reuse in store operations temporary to or incidental to the con-
dition evaluations. Thig conflict may be resolved by reference to a stack or tag
agsociated with the name occurring in the nearest condition not following the con-
dition being evaluated, By this means proper conditional evaluation will take place.
The values of named variables that are later required and are created during
evaluation of the satisfied condition may be permanently stored prior to continuing,

The second qualification requires defined (valid) operands for conditional
evaluation, To permit recognition of these we must know which instance of each
name is appropriate, For some conditionals, no instance of an operand need be
appropriate. For example, assume that creation occurs as an action following
some conditional evaluted earlier in the given sequence. That prior conditional
must have become true and that action taken before the current conditional can be
true. Therefore, in this case the conditional is inconsequential. Several creation
points may be appropriate. With sequential evaluation, a stack can be used to
show the order. With parallel evaluation, the completion order may be arbitrary,
S0 an indication of the creating process is required to preserve the sequence as
originally given. Parallel evaluation of conditionals appears generally to result in
unnecessary work for the sake of finding the desired single action more rapidly,
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DURATION OF DEFINITION OF AN INSTANCE
Creation of ingtances-of regi§iers sugges.s thai such registers are defined for Bl tos.
time afier creation; In practicnl application, these instances have 3 last - use g -~ s———=

process input, At completion of rhis "ast use, the Inslance is of no further use-ang-- -~ v
may be "unnamed"”, which ger.es 1o make i undefined Lhereaficr. The interval. ooz
petween naming at creation and .mnaming afrer last use is the duration of definitiod
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earlier. Other reduction may occur when only one of several separate’ ingtaiited oo

may be referenced by an execution, in which case the originally formulated hpadit
must have included conditionals, The naming could be the same for-all such--

mutually exclusive instances.
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The recognition program for last use in present programming languages is impedetd = w2

by the implicit reuse of names as outputs of processes with actual independénf Tl “"""“‘"""“
meaning, TUniquely renaming these names having multiple meanings as propoed - T
achieves separate registers for each so that no name has more than one meaning.-. :
The expense of doing this is that no register becomes undefined and thus no register

can be reused in a program,
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A comparigon in the programmer-given name space of O; N Oy # ¢ is an indication
of multiple use of names, Each such name in the original order of processes
determines a partition across the set of processes that use that name as input. If
a last use of a variable occurs in a particular statement, the use should be early
in the statement evaluation so that the location can be freed, or so that the
variable can be reassigned by a parallel path, Other variables having later use
may be postponed in the particular statement evaluation, A suggested algorithm
may be to minimize the duration in storage for any variable, since the duration is
loosely related to the freedom to parallel process.

Duration of instances will be consgidered in more detail in a future report, where the
problem of identifying the instances from names will be treated.
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T ways to view this algorithm are suggesi‘ed

N RELATED INVESTiGATiONS

The algomthm is sequentlally formulated, Applicauon of the algomtrhn'h-tt
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-relations in ,\5. Each of these relatlons cornecl processes two apart in- th&inﬁfi
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This would be essentially an experimental study, which to be effectively carried out
would require a computer program for the algorithm because of the large number
of syntactic classes to be considered. It appears likely that empirical separation
of the syntactical elements of a compiler language would achieve regults not much
worse than those achieved by application of the algorithm.

Theoretically, it might be useful to have a description of classes of productions
which can be performed in parallel, Some insight into the "essential complexity"
of the language might be obtained in this way.

The '"essential complexity' of the syntax of most programming languages may be
reduced considerably by applying an algorithm developed by Parikh,® He shows
that any context-free language can be replaced by an ambiguity preserving
grammar, with all productions except S (the initial non-terminal) in the form:

A2 Ab
A-c
where A is any specific nonterminal #8, and a, b, and ¢ are strings of terminalsg

with both a, b-not null.

Ag an example of the effect of application of this replacement, let an arithmetic
statement be defined by:

AI: {arithmetic statement) :: = (variable) = (arithmetic expression})
Ay {arithmetic expression):: = {term}|{arithmetic expression’} {add op) {term)
Agr (add op):: =+ =

-

:  {term):: = {factor)|(term} (mult op) {factor)
: {mult opyu=%|/

=

F: (factor):: = {integer) | {variable) | {arithmetic expression)

If we use the capital abbreviations preceding the nonterminal syntactic classes,
the non-terminal vocabulary V, = {A,, Az, As, M, T, F1}. If we abbreviate
integer by i and variable by v, the terminal vocabulary V, = fi, v, +, ~, %, /1.

In our language syntax subset, the initial nonterminal S is Ay. In effect, Parikh
asgerts that the only other nonterminals required are those which are directly
recursive, In what follows, we show that the given definition of arithmetic
statement, involving six syntactic classes {Aq, A2, Ag, M, T, and F), can be
written in terms of only two syntactic classes (A 1> T). Of course, A is neces-
sary since it'is the ""sentence.' The single recursive syntactic class is not

- necessarily T (F or A, would have done as well). This illustrates the
recognition and elimination of indirect recursion,

Table I shows the original productions rewritten as individual productions, and

successive replacements yielding in the right column the reduction to two syn-
tactic classes A; and T. Productions of the form T- T are eliminated as redundant,
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Application of the algorithm for the detection of parallelism to the syntactic
definition of a programming language requires that the order of application of the
productions be specified. The order chosen by the programmer in the syntax
recognition portion of a compiler for a particular language presumably provides
more nearly efficient recognition of the more likely strings. Therefore, some
value judgment is required in selecting this order which is unrelated to the
actual syntax. Experimental determination of the relative occurrence over a
large set of programs of the various strings allowed by a language could be used
as an aid in finding improved ordering for productions, Following all possible
production paths will obviously recognize the siring if correct, at the expense of
following mostly incorrect production paths. A compromise in the number of
levels in the syntax that matches the number of parallel paths that can be con-
currently followed may be desirable, Introduction of other equivalent sets of
productions {in other orders) may be done without reducing the power of the
language. However, as our example indicates, such introduction may increase the
number of productions very rapidly and complicate the recognition procedure so
much that application of Parikh's result would be necessary to practicably reduce
the number of syntactic classes to a minimum,
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Continue o identify the ei‘fect of iang‘uag‘e
Examine criteria for partitioning a pi'ograxn into'processes.
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instances.
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